ReLeaf Brands - Medmar Tanque Verde LLC #00000081DCPK00962019 #00000039ESEZ33667642 Soil, Sun, Love - Cactus Bloom Facilities Management LLC #00000144ESQK21738687

> Sugar Wax Batch#: Mendo Cake U0811-0C

Ingredients: 100% Cannabis Extract.

Cultivated by Medmar Tanque Verde LLC #00000081DCPK00962019 Infused or prepared for sale by Medmar Tanque Verde LLC #00000081DCPK00962019 Tested at: Level One Labs Distributed to Desert Bloom ReLeaf Center #00000081DCPK00962019 #00000039ESEZ33667642, ReLeaf 85624 #00000144ESQK21738687.

ARIZONA DEPARTMENT OF HEALTH SERVICES' WARNING:

Marijuana use can be addictive and can impair an individual's ability to drive a motor vehicle or operate heavy machinery. Marijuana smoke contains carcinogens and can lead to an increased risk for cancer, tachycardia, hypertension, heart attack, and lung infection. <u>Marijuana use may affect the health of a pregnant woman and the unborn child.</u> KEEP OUT OF REACH OF CHILDREN.

Using marijuana during pregnancy could cause birth defects or other health issues to your unborn child.

Powered by Confident Cannabis 1 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #00000081DCPK00962019 Sample: 2307LVL0710.3693 Strain: Mendo Cake U0811-0C

Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

	69.23% Total THC	<loq Total CBD</loq 	81.39%
• Cake	20.63 mg/g Total Terpenes	Not Tested	Total Cannabinoids

Can

Analyte	LOQ	Mass	Mass	Qualifier
	%	%	mg/g	
"HCa	0.661	76.221	762.21	
∆9-THC	0.661	2.386	23.86	
18-THC	0.661	ND	ND	
HCVa	0.661	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
HCV	0.661	ND	ND	
BDa	0.661	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
CBD	0.661	ND	ND	
BDVa	0.661	ND	ND	
CBDV	0.661	ND	ND	
BN	0.661	ND	ND	
CBGa	0.661	2.786	27.86	
CBG	0.661	ND	ND	
BC	0.661	ND	ND	
otal		81.392	813.92	

Qualifiers: Date Tested: 07/10/2023 07:00 am

Total THC = THCa * 0.877 + d9-THC

Total CBD = CBDa * 0.877 + CBD The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Cannabinoid potency performed by HPLC-DAD per SOP-(1608). ADHS approved method for potency by HPLC-DAD for all listed analytes.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com Lic#0000004LCIG00024823

Confident Cannabis All Rights Reserved support@confidentcannabis.com www.confidentcannabis.com

Matthew Schuberth Laboratory Director (866) 506-5866

Powered by Confident Cannabis 2 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #00000081DCPK00962019 Sample: 2307LVL0710.3693 Strain: Mendo Cake U0811-0C

Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Terpenes

Primary Aromas

Analyte	LOQ	Mass	MassQualifier	Analyte	LOQ	Mass	MassQualifier	กิจ
	mg/g	mg/g	%		mg/g	mg/g	%	
β-Caryophyllene	0.85	11.29	1.129	Eucalyptol	0.43	NR	NR	
α-Humulene	0.43	3.39	0.339	Farnesene	0.07	NR	NR	• /
δ-Limonene	0.85	2.84	0.284	Fenchol	0.43	NR	NR	Cinnamon
β-Myrcene	0.43	1.61	0.161	Fenchone	0.85	NR	NR	•
Linalool	0.85	0.95	0.095	y-Terpinene	0.43	NR	NR	
α-Pinene	0.43	0.55	0.055	y-Terpineol	0.09	NR	NR	
3-Carene	0.85	NR	NR	Geraniol	8.55	NR	NR	T
α-Bisabolol	0.43	NR	NR	Geranyl Acetate	0.43	NR	NR	Hops
α-Cedrene	0.43	NR	NR	Guaiol	0.43	NR	NR	
α-Phellandrene	0.43	NR	NR	Isoborneol	4.27	NR	NR	
α-Terpinene	0.43	NR	NR	Isopulegol	0.43	NR	NR	
α-Terpineol	0.70	<loq< td=""><td><loq< td=""><td>Menthol</td><td>0.43</td><td>NR</td><td>NR</td><td></td></loq<></td></loq<>	<loq< td=""><td>Menthol</td><td>0.43</td><td>NR</td><td>NR</td><td></td></loq<>	Menthol	0.43	NR	NR	
β-Eudesmol	0.43	NR	NR	Nerol	0.43	NR	NR	Lemon
β-Pinene	0.85	<loq< td=""><td><loq< td=""><td>Pulegone</td><td>0.43</td><td>NR</td><td>NR</td><td></td></loq<></td></loq<>	<loq< td=""><td>Pulegone</td><td>0.43</td><td>NR</td><td>NR</td><td></td></loq<>	Pulegone	0.43	NR	NR	
Borneol	1.28	NR	NR	p-Cymene	0.43	NR	NR	8 - B
Camphene	0.43	<loq< td=""><td><loq< td=""><td>Sabinene</td><td>0.43</td><td>NR</td><td>NR</td><td>متمني فرقبتهم</td></loq<></td></loq<>	<loq< td=""><td>Sabinene</td><td>0.43</td><td>NR</td><td>NR</td><td>متمني فرقبتهم</td></loq<>	Sabinene	0.43	NR	NR	متمني فرقبتهم
Camphor	1.71	NR	NR	Sabinene Hydrate	0.43	NR	NR	
Caryophyllene	0.43	NR	NR	Terpinolene	0.85	<loq< td=""><td><loq< td=""><td>Lavender</td></loq<></td></loq<>	<loq< td=""><td>Lavender</td></loq<>	Lavender
Oxide	0.43	INK	INK	trans-Nerolidol	0.43	NR	NR	
Cedrol	0.43	NR	NR	trans-Ocimene	0.28	NR	NR	
cis-Nerolidol	0.85	NR	NR	Valencene	0.43	NR	NR	
cis-Ocimene	0.12	NR	NR					•
Citronellol	4.27	NR	NR					Pine
								T IIIC
								20.63 mg/g
								20.03 mg/g
								Total Terpenes

Qualifiers: Date Tested: 07/10/2023 07:00 am

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Qualifying code Q3: For informational purposes only.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com Lic# 0000004LCIG00024823 Althe Str

Matthew Schuberth Laboratory Director Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Powered by Confident Cannabis 3 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #00000081DCPK00962019

Sample: 2307LVL0710.3693

Strain: Mendo Cake U0811-0C Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Pass

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Residual Solvents

Analyte	LOQ	Limit	Mass	Status	Qualifie
	PPM	PPM	PPM		
Acetone	350.000	1000.000	ND	Pass	
Acetonitrile	142.277	410.000	ND	Pass	
Benzene	0.697	2.000	ND	Pass	
Butanes	2328.682	5000.000	ND	Pass	
Chloroform	20.958	60.000	ND	Pass	
Dichloromethane	212.975	600.000	ND	Pass	
Ethanol	1736.531	5000.000	ND	Pass	
Ethyl-Acetate	1738.178	5000.000	ND	Pass	
Ethyl-Ether	1731.395	5000.000	ND	Pass	
Heptane	1733.915	5000.000	ND	Pass	
Hexanes	99.952	290.000	ND	Pass	
Isopropanol	1728.391	5000.000	ND	Pass	
Isopropyl-Acetate	1731.589	5000.000	ND	Pass	
Methanol	1036.240	3000.000	ND	Pass	
Pentanes	1742.829	5000.000	ND	Pass	
Propane	2323.934	5000.000	ND	Pass	
Toluene	311.860	890.000	ND	Pass	
Xylenes	747.209	2170.000	ND	Pass	

Qualifiers: Date Tested: 07/07/2023 07:00 am

Performed by GCMS-HS per SOP-LM-014. Methods used per AZDHS R9-17-404.03 and solvent limits set by AZDHS R9-17 Table 3.1. ADHS approved method for residual solvents by GCMS-HS for all listed analytes.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com Lic# 0000004LCIG00024823

Alter Str.

Matthew Schuberth Laboratory Director Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Powered by Confident Cannabis 4 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #0000081DCPK00962019

Sample: 2307LVL0710.3693

Strain: Mendo Cake U0811-0C

Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Pass

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Pesticides

Analyte	LOQ	Limit	Units	Status	Qualifier	Analyte	LOQ	Limit	Units	Status	Qualifier
	PPM	PPM	PPM				PPM	PPM	PPM		
Abamectin	0.030	0.500	ND	Pass		Hexythiazox	0.040	1.000	ND	Pass	
Acephate	0.040	0.400	ND	Pass		Imazalil	0.040	0.200	ND	Pass	M2
Acequinocyl	0.440	2.000	ND	Pass		I <mark>m</mark> idacloprid	0.040	0.400	ND	Pass	
Acetamiprid	0.040	0.200	ND	Pass		Kresoxim Methyl	0.040	0.400	ND	Pass	
Aldicarb	0.040	0.400	ND	Pass		Malathion	0.040	0.200	ND	Pass	
Azoxystrobin	0.050	0.200	ND	Pass		Metalaxyl	0.040	0.200	ND	Pass	
Bifenazate	0.040	0.200	ND	Pass		M <mark>e</mark> thiocarb	0.040	0.200	ND	Pass	
Bifenthrin	0.040	0.200	ND	Pass		M <mark>e</mark> thomyl	0.040	0.400	ND	Pass	L1 M1 V1
Boscalid	0.040	0.400	ND	Pass		M <mark>y</mark> clobutanil	0.040	0.200	ND	Pass	
Carbaryl	0.040	0.200	ND	Pass		Naled	0.040	0.500	ND	Pass	
Carbofuran	0.040	0.200	ND	Pass		Oxamyl	0.040	1.000	ND	Pass	
Chlorantraniliprole	0.040	0.200	ND	Pass	L1 V1	Paclobutrazol	0.040	0.400	ND	Pass	
Chlorfenapyr	0.440	1.000	ND	Pass		Permethrins	0.040	0.200	ND	Pass	M2 V1
Chlorpyrifos	0.040	0.200	ND	Pass		Phosmet	0.040	0.200	ND	Pass	
Clofentezine	0.040	0.200	ND	Pass		Piperonyl Butoxide	0.040	2.000	ND	Pass	
Cyfluthrin	0.440	1.000	ND	Pass		Prallethrin	0.040	0.200	ND	Pass	
Cypermethrin	0.040	1.000	ND	Pass		Propiconazole	0.040	0.400	ND	Pass	
Daminozide	0.440	1.000	ND	Pass	M1	Propoxur	0.050	0.200	ND	Pass	
Dichlorvos (DDVP)	0.040	0.100	ND	Pass		Pyrethrins	0.440	1.000	ND	Pass	M1
Diazinon	0.040	0.200	ND	Pass		Pyridaben	0.040	0.200	ND	Pass	
Dimethoate	0.040	0.200	ND	Pass		Spinosad	0.040	0.200	ND	Pass	
Ethoprophos	0.040	0.200	ND	Pass		Spiromesifen	0.040	0.200	ND	Pass	
Etofenprox	0.040	0.400	ND	Pass	M2	Spirotetramat	0.040	0.200	ND	Pass	
Etoxazole	0.040	0.200	ND	Pass		Spiroxamine	0.040	0.400	ND	Pass	
Fenoxycarb	0.040	0.200	ND	Pass		Tebuconazole	0.040	0.400	ND	Pass	
Fenpyroximate	0.040	0.400	ND	Pass		Thiacloprid	0.040	0.200	ND	Pass	
Fipronil	0.040	0.400	ND	Pass		Thiamethoxam	0.040	0.200	ND	Pass	
Flonicamid	0.040	1.000	ND	Pass		Trifloxystrobin	0.040	0.200	ND	Pass	
Fludioxonil	0.040	0.400	ND	Pass							

Herbicides				
Analyte	LOQ	Limit	Units	Status
	PPM	PPM	PPM	
Pendimethalin	0.040	0.100	NR	Pass

Qualifiers:

Performed by LCMSMS per SOP-LM-021 and SOP-LM-022. ND = Not Detected; NR = Not Reported. Methods used per AZDHS R9-17-404.03 and pesticide limits set by AZDHS R9-17 Table 3.1. ADHS approved method for pesticide testing by LCMSMS for full list effective 5/1/2021.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com

Lic#0000004LCIG00024823

the &

Confident Cannabis All Rights Reserved support@confidentcannabis.com www.confidentcannabis.com

Matthew Schuberth Laboratory Director (866) 506-5866

Powered by Confident Cannabis 5 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #00000081DCPK00962019

Sample: 2307LVL0710.3693

Strain: Mendo Cake U0811-0C Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Pass

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Mycotoxins

Total Ochratoxins Date Tested: 07/09/2023 Total Aflatoxins Date Tested: 07/09/2023

Analyte <u>Log Limit Units Status Qualifier</u> Hg/kg µg/kg µg/kg G1 and G2) Total Ochratoxins (A and 2.00 20.00 4.46 Pass B) EVEELS DIMENSIONAL CONTRACT OF CONTR	oxins Date Tested: 07/09/2023					
Total Aflatoxins (B1 B2 G1 and G2)4.0020.00NDPassTotal Ochratoxins (A and Total Ochratoxins (A and Company)2.0020.004.46Pass	Analyte	LOQ	Limit	Units	Status	Qualifier
G1 and G2) Total Ochratoxins (A and 2 00 20.00 146 Pass	Total Aflatoving (D1 D2					
Total Ochratoxins (A and 200 2000 4.46 Pass	Iotal Aflatoxins (B1 B2	4.00	20.00	ND	Pass	
	Total Ochratovins (A and					
		2.00	20.00	4.46	Pass	
	5,					

TNTC = Too Numerous to Count. The lower limit of quantification for Aflatoxin is 4ppb and the lower limit of quantification for Ochratoxin is 2ppb unless noted on the CoA by further dilution. Unless otherwise stated all quality control samples performed within specifications. Analysis Method/Instrumentation: direct ELISA produced by Romer Labs and read on Bio-Tek 800TS microplate reader. Procedure followed SOP-LM-018. Methods used per AZDHS R9-17-404.03 and R9-17-404.04 and limits set by AZDHS R9-17 Table 3.1. ADHS approved method.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com

Lic# 0000004LCIG00024823

Atta Str

Matthew Schuberth

Laboratory Director

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Powered by Confident Cannabis 6 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #00000081DCPK00962019

Sample: 2307LVL0710.3693

Strain: Mendo Cake U0811-0C Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Microbials

Pass

Analyte	Result	Result Units	Status
	CFU/g	CFU/g	
E. Coli	ND	100	Pass
Salmonella	Not Detected	in one gram	Pass
Aspergillus terreus	Not Detected	in one gram	Pass
Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger	Not Detected	in one gram	Pass
LEVEL	. E	IN	Ε
Qualifiers: Date Tested: 07/10/2023 12:00 am			

TNTC = Too Numerous to Count. The lower limit of quantification for E. coli is 10 CFU/g unless noted on the CoA by further dilution. Unless otherwise stated all quality control samples performed within specifications. Analysis Method/Instrumentation: E. coli plating via 3M Petrifilm per SOP-LM-019, Salmonella spp. And Aspergillus spp. detection by Bio-Rad CFX96 Deep Well real-time PCR per SOP-LM-016 & SOP-LM-017. Methods used per AZDHS R9-17-404.04 and microbial limits set by AZDHS R9-17 Table 3.1. ADHS approved method for microbials for all listed organisms.

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com Lic# 0000004LCIG00024823

Matthew Schuberth Laboratory Director Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Powered by Confident Cannabis 7 of 7

Releaf Brands

8060 E 22nd St Tucson, AZ 85710 mbaca@releafbrands.com (520) 886-1760 Lic. #0000081DCPK00962019

Sample: 2307LVL0710.3693

Strain: Mendo Cake U0811-0C Batch#: Mendo Cake U0811-0C; Batch Size: 11 g Sample Received: 07/07/2023; Report Created: 07/14/2023; Expires: 07/14/2024

Harvest Date: 03/21/2023; Manufacturing Date: 06/27/2023

Mendo Cake U0811-0C

Pass

Concentrates & Extracts, Other, Other Using Marijuana During Pregnancy could cause birth defects or other health issues to you & your unborn child. Distribution Chain/Intended Sale: Medmar Tanque Verde LLC, Desert Bloom Re-leaf Center, Releaf85624, Cactus Bloom Facility Management

Heavy Metals

	Analyte	Mass	Limit	Status	Qualifier
		PPM	PPM		
	Arsenic	<0.4 <mark>0</mark> 0	0.400	Pass	
	Cadmium	< 0.4 <mark>0</mark> 0	0.400	Pass	
	Lead	<1.000	1.000	Pass	V1
	Mercury	<1.200	1.200	Pass	V1
ifiers:	(2023 07:00 am	A E			
103100.07/10/					

1525 N Granite Reef Rd Scottsdale, AZ (480) 867-1520 http://www.levelonelabs.com Lic# 0000004LCIG00024823

the Str

Confident Cannabis All Rights Reserved support@confidentcannabis.com

Matthew Schuberth Laboratory Director

(866) 506-5866 www.confidentcannabis.com